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INTRODUCTION 

For the past two years the collaborative effort between the University of 
Poitiers and ARRADCOM has been concentrating on the physics of the shock front 
rise time (structure) in liquids. Liquid water has been the primary vehicle for 
that study. 

Recent success in obtaining optical reflectivity data for liquid nitrometh- 
ane and in writing a more complete reflectivity theory (rereflection has now been 
included) have shifted the program's emphasis from the shock front rise time to 
the systematic differences observed in the shock front reflectivity of water and 
nitromethane (for assumed comparable rise times). This is the first report of 
the more complete theory and those systematic differences. 

Any systematic difference between the shock front reflectivities of water 
and nitromethane could be very important from both fundamental and applied view- 
points. The results presented in this report suggest the possibility that explo- 
sive-related chemistry is already occurring within the shock front thickness of 
liquid nitromethane, and that the effects of that chemistry can be observed in 
the optical reflectivity results. Were such a possibility to become fact, one 
would have a new tool for observing and controlling detailed explosive properties 
in terms of molecular structure and composition. From a fundamental point of 
view, the role of liquid structure and composition on shock front structure is 
fascinating in its own right. 

MULTIPLE REFLECTION THEORY 

In our previous work (ref 1) the effect of multiple reflections was 
neglected. For large reflectivities (e.g., 20% at an 82° optical angle of inci- 
dence in water) such a neglect can lead to difficulties. Multiple reflections 
are considered here by means of a perturbative approach. 

Consider a differential region of varying indexes of refraction as shown 
figure 1. in 

In the absence of multiple reflections, the differential reflected amplitude 
is given by r 

«r-f(^a±t^9) (1) 

where 9 is the angle of incidence (measured with respect to the normal to the 
surface of dn), and the +, - signs refer to perpendicular, or parallel (to the 
plane of incidence) optical polarizations, respectively. 
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Figure 1. Incoming and reflected fields, E and E respectively, impinging on a 
slab of differential index of refraction 6n , centered at Z, ., and 
of width AZ 1+1 i+1 

Applying equation 1 to both E and Er in figure 1 gives 

5n 
^r^i+P = 1  [^-1 ti ± tan^GCZ. +f)]E(zi +f) + 

1+1) J-  i     i  -i 

i+1- 

AZ, 
Upon expanding terms such as Er(Zi+1 + ^ in equation 2, 

dE d2E 

VZ1+1  +f)   = Er^i+l)   + dTli.jf)  +idZ-£ll+ia
2+  -> 

(2) 

(3) 

gives to lowest order 

dE   (E - E ) 

IT "   2^-  W^1 ± tan2e) (4) 
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Equation 4 simply says that, to lowest order, (E - E ) replaces E in equation 1 
when rereflection is taken into account. This result could, of course, have been 
guessed. 

Rewrite equation 4 as 

[il+(it)<'*"-26)iE
r-^i»±"»^ (5) 

and make the transformations 

Er = F(Z)ef(Z),  E = G(Z)ef(Z) (6) 

J 

Substituting equation 6 into equation 5 gives 

dF   G dn ,,     ?n. 
dZ =2^dF(1±tan9) (7) 

if f(Z) is taken to satisfy the differential equation 

df     1 dn ,,     ,„- 
d^=-2^dl(1±tan29) (8) 

Thus, when (-f) is taken to be the reflected amplitude associated with unit 
amplitude input electric field, F may be viewed as the reflected amplitude asso- 
ciated with field strength G in a space where rereflection of F does not occur. 
That is the beauty of the transformation given by equation 6; one can solve for F 
exactly as in the simple case (ref 1) where multiple reflections are not impor- 
tant. 

For a shock front beginning at Z = 0, the reflectivity, R, is given by 

R = 
E (0) 
r |F(0)|2 

E(0) 

Thus F(0) and G(0) determine the reflectivity. 

Poynting's theorem for the reflection problem being considered here can be 
written as 

Co(|E(0)|
2 - |Er(0)|2)sinOo = (10) 

= C(|E|2 - |Er|2)slne 



where C0 is the velocity of light in the preshocked medium. For 

v(Z) E C(Z)e2f(Z) 

Equation 10 becomes 

(11) 

(12) 
v
o(|G(0)|2 -   |F(0)|2)Sineo  = 

= v(|G|2 -   |F|2)sin9 

Applying  Snell's   law,   nsin9  = n^inQ^   to equation   12 gives 

rr-?\   2             f(0)     2 

\%Q\     =  (£S _|     f,   _   lHOii2;        |F(Z) i2 

'GCO)'      tn ef(z)l   i1     IG(O)I 1 + l^oyl (13) 
e 

o 

A B 

G(Z)   _   ,G(Z)|   2iriYA 
G(0)   -   ^(O)16 (14) 

dF    -  rMI     F   |^   2-niy v      27riYu 
mr ~= ^m)l]e   B + 27rii^Tie    X (i5) 

Upon rewriting equation 13 to lowest order in I- F I 

I  G I _ fnef(0) i r    F(0) ,zfo F    ifa 'W     i77(zTMi - Ig^f ( }   {i+l^-j} (16) 
o 

and substituting that along with equations 14 and 15 into equation 7 gives 

d|GToyl     . ^ r,    .no).2^2 ,       „ 
1   +   LIEJI     ~  [2^J   ^   "   IG(0)I    J        (1 * tan26)cos{27T(Y     - Y   )} 
1+
IG(O)I (17) 

The solution proceeds by solving equations 8 and 17 along with an equation for 
^YA   V* 



Because F and G in equation 7 appear with the absence rereflection, writing 
down equations for their fractional phase angles y and Y  is relatively simcle.* 

A     B J f 

cos9 
d^B = " — dZ (18a) 

cos9 
d^A = — dZ (18b) 

Integrating equations 18 while using Snell's law and X = A  n   (with X       being 
the optical wavelength in vacuum) gives 00 00 

(YA - V - r 
oo 

fc   {n2(Z')   - n  2sln29   f/2dz, 
U o oJ (19) 

Again, the foot of the shock front is assumed to begin at Z = 0, and again our 
problem is solved to first order in rereflection by simultaneously solving equa- 
tions 8, 17, and 19. ■> s.     ^ 

SOLUTIONS WITH REREFLECTION 

It is simple to show that 

(1 ± tan29) =, 

+ , 
n2 - n2 sin2e 

o     o 

n2 - 2n2 sin2e 
 o o 

n2 - n2 sin2e 

(20) 

so that integrating equation 8 from n to n gives 

n2 - n2 sin2 

E+(Z) = - -Un {- 2 _o} 
n2 - n2 sin2( 

(21) 

* A ^reflection contribution to G(Z) would, in principle, complicate the phase 
YA (Z). 



n 
f (Z) = - f .(Z) + £n(-2-] 

T        n (22) 

Equation 19 has previously (ref 2) been evaluated for the special case of a 
constant gradient in the index of refraction, 

n = no + (An)f j- (23) 

where L is the shock front thickness and (An) is the total change in index of 
refraction across the shock front. That equation 19 result for the special case 
of equation 23 is 

n2L 
(Y - Y )  WA  V  Y  (An) 

oo 

sin29  £n 
o 

sin9  o - cos9  + 

sinO 
(m+i) i+Vi- (-r^) m+l 

1 + cost (24) 

where 

n 
m = 1 

n 
o 

(25) 

has been used.  m is the most convenient parameter to use for the numerical inte- 
gration of the right hand side of equation 17. 

As Z goes from Z = 0 to the top of the shock, \-^yr\   goes from R1^2 to 0 
(reflection ceases at the top of the shock).  Thus ^ ' 

/0 

|F(0) G(O)1 

G(0)IV 1 + ^ 
,1/2 = Zn   {Ri/Z  +  /l + R } (26) 

where equation 9 has been used, and equation 17 becomes 

£n u1/2 ± /rm       1     f
nf      -f(0) 

/I   -  R 2n ^n    dn   f ^fTzJ ^   (1  ± tan26)cos{27r(YA - YB)} 

(27) 



Equation 27 should be compared with the previous (ref 1, 2) result where 
rereflectlon and F(Z) on the right hand side of equation 12 are neglected. That 
previous result Is 

1    nf 
R = sln[— ln    dn (1 ± tan29)cos{2Tr(YA - Yg)}] (28) 

In the limit of n > no and R ^ 0 equations 27 and 28 give Indentlcal results. 

Let Ij. denote the right hand side of equation 27.  To order R3/2, equation 
27 may then be written as 

1/2 .,   Rx 
R   (1 + 3-) = - I± (29) 

which becomes (to order R ) 

R2 + ^R - j I±2 = 0 (30) 

Solving equation 30 for R to order I ^ then gives 

R=I±-4I± (31) 

Equation 31, along with equations 21, 22, and 24, represents the final 
result of this section. To the algebraic order considered, the result is consis- 
tent with a first order correction for multiple reflections (i.e., for the pre- 
sence of rereflectlon) and finite reflectivity (e.g., F(Z) in the right hand side 
of equation 12 taken to be non-zero). The algebraic accuracy of equation 31 is 
such that inclusion of the next higher order term for R in equation 29 is equiva- 
lent to a 1% reflectivity calculational error when R = 0.2 (i.e. 20% reflec- 
tion). 

It is a fairly simple task to evaluate 1+ numerically by means of parti- 
tions and a cyclic computer program. Indeed, a 19-partition Integration program 
was run on a TRS-80 handheld computer with each calculation point taking approxi- 
mately 5 minutes. The results of those calculations are shown and discussed in 
the next section. The calculational error associated with 19 as compared 39 pro- 
gram steps throughout the entire range of experimental interest is less than 1%. 



EXPERIMENTAL AND THEORETICAL RESULTS 

The experimental data points shown in figures 2, 3, and 4 are the results of 

fnKe^iment:al program at the Laboratory for Energetics and Detonation (C.N.R.S. 
Lab 193) of the University of Poitiers. That experimental program is supported 
by the Centre National de la Recherche Scientifique (C.N.R.S.) of France. The 
theory presented in the previous section is supported by the U.S. Army through 

r wv „ * Laboratory Independent Research (ILIR) Program within the Large 
caliber Weapons Systems Laboratory (LCL) of ARRADCOM. 

The experimental data points were obtained with the small light-gas canon 
facility at the University of Poitiers. A stabilized argon laser operating at 
4145A was used to illuminate the shock front, and an 8-mm diameter, 10-namosecond 
rise time, silicon photodiode was used to measure the calibrated reflectivity. 
The pressure determination (5.8 kbar in water and 6.0 kbar in nitromethane) was 
measured to within 5%, while the reflectivity record was read to within 10%. 

The authors have previously compared (ref 1) experiment with theory (without 
multiple reflections) for water. With multiple reflections (fig. 2), B < 0.1 

fits the data fairly well, while a somewhat larger value of (3, , appears1 to be 
necessary for the parallel to the plane-of-incidence optical polarization. In 
the absence of multiple reflections, the theory fits both optical polarizations 
equally well (g < 0.1). While it cannot be said at this time whether the differ- 
ence in agreement between theory and experiment for the two optical polarizations 
in water has a real physical basis, in principle, the two optical polarizations 
should not quite "see" the same thing. 

Rahman and Stillinger (ref 3) have demonstrated (by computer molecular 
dynamics) a finite lifetime for shear waves in liquid water (e.g., -0.4 x lO-12 

sec for a shear wavelength of ~13A). The implication of that finite lifetime is 
the initial one-dimensional strain's becoming hydrostatic only after the shock 
front (i.e., after the shock plateau) has been reached. The 0.4 x 10"12 sec 
lifetime is consistent with a shock front rise time in water of ~10"12 sec as has 
independently been determined (ref 4) from shock polarization theory and experi- 
ment. Thus, the perpendicular optical polarization case (with E perpendicular to 
the direction of shock propagation), and the parallel polarization case (where 
EsinO is the component of E parallel to the direction of shock propagation) would 
not  see" identical physical phenomena. 

The data and theory (with rereflection included) for liquid nitromethane are 
shown In figure 3. The systematic loss of agreement between theory and experi- 
ment, for both polarizations, with Increasing angle of incidence (decreasing 
grazing angle) is clear and graphic. The approximately 50% difference between 
theory and experiment at 8 degrees grazing angle is well beyond theoretical and 
experimental uncertainty and error. 

The optical path length through the shock front is given by (2L/cos9) where 
L is the shock front thickness. The systematic worsening of agreement between 
theory and experiment suggests the possible existence of an optical path length 
effect in the reflectivity measurements.  In turn, an optical path length effect 
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Figure 2.  Experimental and theoretical (from equation 31) reflectivities for mf 
0.0394.  3 = n0L/A00.  Solid lines are theory, and X and • are experi- 
mental data points.  The subscripts on 6 inidcate the optical polari- 
zation.  For liquid water.  Grazing angle is (6  - 90°) 
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Figure 3.  Experimental and theoretical (from equation 31) reflectivities for m£ 
0.0394.  3 = n0L/X0O.  Solid lines are theory, and X and • are experi- 
mental data points.  The subscripts on 3 indicate the optical polari- 
zation.  For liquid nitromethane.  Grazing angle is (90 - 90°) 

10 
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Figure 4.  X and • are experimental data points.  Solid curves are the effect of 
"Thermal Fluctuations" added to the 3 = 0.1 curves of figure 3.  For 
liquid nitromethane.  Grazing angle is (60 - 90°) 
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suggests the possible existence of an optical-scattering-related fluctuation 
phenomenon. 

Since nitromethane is an explosive, it is conceivable that the reflectivity 
data are demonstrating the existence of chemically related thermal fluctuations 
within the shock front. loops has reported (ref 5) on the temperature dependence 
of the index of refraction for liquid nitromethane.  His observations give 

dn    ,      -4 « -1 ^=-4.5x10  0C 1 (32) 

so that a (AT) > 0 fluctuation will decrease the measured index of refraction 
contribution at the fluctuation site. 

Consider a reflectivity, R, approximately given by 

1/2   (All)f R   =-^-(l±tan20) 
o 

and a fluctuation effect on (An)f given by 

(An)f = (An)^
0) (1 + a(T)h) (34) 

where h - 2Lcos 9 is the optical path length. If (AR)0 is taken as the change 
in reflectivity caused by the thermal fluctuations characterized by a, and if 
\cinj   \   i, then 

1 + tan291  cos0'  _S  ; 
^2 "l+tan^ej cosQi (AR)9l " (AR)02 (l + tanW ^^7 (35) 

If (AR)9 is taken as the difference between experimental and theoretical 
values for B 

11 = 0.1 at 9 = 82°, then 

1(AR)82o = - 5.5 x 10"
2 (36a) 

11(AR)820 = - 4.4 x 10"
2 (36b) 

curves shown Substituting equations 36a and 36b into equation 35 yields the solid . 
in figure 4.  Clearly a path length dependent subtractive contribution to An by 
means of equations 33 through 35 serves to facilitate the agreement between the- 
ory and experiment. 

12 



DISCUSSION AND CONCLUSIONS 

The most striking aspect of the theoretical and experimental results pre- 
sented in this report is the distinct difference between theoretical and experi- 
mental agreement for liquid water and liquid nitromethane. While the agreement 
for water is not perfect, the agreement for nitromethane is clearly lacking in 
the absence of some angle of incidence dependent effect such as that proposed by 
equations 33 and 34. Liquid nitromethane is an explosive and it seems reasonable 
to postulate explosive-related chemistry (although 6 kbar is approximately an 
order of magnitude less than room-temperature shock initiation pressure) as the 
mechanism for the a(T)h term of equation 34. 

If the experimental-theoretical discrepancy shown in figure 3 can be attri- 
buted to explosive-related chemical effects, as seems very possible, the authors 
believe that the attribution would be a first for the physics of explosive (ener- 
getic) media. If explosive-related chemistry is the mechanism for proposed ther- 
mal fluctuations, then the experimental-theoretical discrepancy should increase 
with increasing shock pressure.  Time and further experiments will tell. 

mf = 0.0394 was used for both water at 5.8 kbar, and nitromethane at 6.0 
kbar.  For liquid nitromethane at 20oC, from Toops (ref 5) and Hardesty (ref 6), 

An = 0.338 (p - po) (37) 

where p is mass density. From Enig and Petrone (ref 7) p (6 kbar) = 1.304 g cm"3 

so that (An)f = 0.0544. The preshock value of no = 1.385 then gives mf = 0.0393. 

For water, from Zeldovich, et al (ref 8), 

An = 0.334 (p - 1) 

From Ap = 0.1575 g cm ' (an extrapolation of the Rice and Walsh (ref 9) data) and 
n = 1.334 one finds mf = 0.0394. As a 0.3% change in mf can barely be seen on a 
plot of theoretical results, the same mf value was used in characterizing the 
index of refraction change in both liquids. Similarly a 10oC shock-induced tem- 
perature change has a negligible effect on the theoretical predictions of equa- 
tion 32. 

13 
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